Copied to
clipboard

G = C22⋊C4×C21order 336 = 24·3·7

Direct product of C21 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C21, C222C84, C42.52D4, C23.2C42, (C2×C4)⋊1C42, (C2×C84)⋊4C2, (C2×C6)⋊1C28, (C2×C42)⋊1C4, (C2×C12)⋊2C14, (C2×C14)⋊9C12, (C2×C28)⋊10C6, C2.1(C2×C84), C2.1(D4×C21), C6.12(C7×D4), C42.41(C2×C4), C6.10(C2×C28), C14.28(C3×D4), C14.24(C2×C12), (C22×C6).1C14, C22.2(C2×C42), (C22×C42).1C2, (C22×C14).9C6, (C2×C42).52C22, (C2×C6).13(C2×C14), (C2×C14).30(C2×C6), SmallGroup(336,107)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C21
C1C2C22C2×C14C2×C42C2×C84 — C22⋊C4×C21
C1C2 — C22⋊C4×C21
C1C2×C42 — C22⋊C4×C21

Generators and relations for C22⋊C4×C21
 G = < a,b,c,d | a21=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 92 in 68 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C7, C2×C4, C23, C12, C2×C6, C2×C6, C2×C6, C14, C14, C14, C22⋊C4, C21, C2×C12, C22×C6, C28, C2×C14, C2×C14, C2×C14, C42, C42, C42, C3×C22⋊C4, C2×C28, C22×C14, C84, C2×C42, C2×C42, C2×C42, C7×C22⋊C4, C2×C84, C22×C42, C22⋊C4×C21
Quotients: C1, C2, C3, C4, C22, C6, C7, C2×C4, D4, C12, C2×C6, C14, C22⋊C4, C21, C2×C12, C3×D4, C28, C2×C14, C42, C3×C22⋊C4, C2×C28, C7×D4, C84, C2×C42, C7×C22⋊C4, C2×C84, D4×C21, C22⋊C4×C21

Smallest permutation representation of C22⋊C4×C21
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 158)(2 159)(3 160)(4 161)(5 162)(6 163)(7 164)(8 165)(9 166)(10 167)(11 168)(12 148)(13 149)(14 150)(15 151)(16 152)(17 153)(18 154)(19 155)(20 156)(21 157)(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(106 147)(107 127)(108 128)(109 129)(110 130)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)
(1 98 139 52)(2 99 140 53)(3 100 141 54)(4 101 142 55)(5 102 143 56)(6 103 144 57)(7 104 145 58)(8 105 146 59)(9 85 147 60)(10 86 127 61)(11 87 128 62)(12 88 129 63)(13 89 130 43)(14 90 131 44)(15 91 132 45)(16 92 133 46)(17 93 134 47)(18 94 135 48)(19 95 136 49)(20 96 137 50)(21 97 138 51)(22 119 82 158)(23 120 83 159)(24 121 84 160)(25 122 64 161)(26 123 65 162)(27 124 66 163)(28 125 67 164)(29 126 68 165)(30 106 69 166)(31 107 70 167)(32 108 71 168)(33 109 72 148)(34 110 73 149)(35 111 74 150)(36 112 75 151)(37 113 76 152)(38 114 77 153)(39 115 78 154)(40 116 79 155)(41 117 80 156)(42 118 81 157)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,158)(2,159)(3,160)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,168)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,157)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(106,147)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146), (1,98,139,52)(2,99,140,53)(3,100,141,54)(4,101,142,55)(5,102,143,56)(6,103,144,57)(7,104,145,58)(8,105,146,59)(9,85,147,60)(10,86,127,61)(11,87,128,62)(12,88,129,63)(13,89,130,43)(14,90,131,44)(15,91,132,45)(16,92,133,46)(17,93,134,47)(18,94,135,48)(19,95,136,49)(20,96,137,50)(21,97,138,51)(22,119,82,158)(23,120,83,159)(24,121,84,160)(25,122,64,161)(26,123,65,162)(27,124,66,163)(28,125,67,164)(29,126,68,165)(30,106,69,166)(31,107,70,167)(32,108,71,168)(33,109,72,148)(34,110,73,149)(35,111,74,150)(36,112,75,151)(37,113,76,152)(38,114,77,153)(39,115,78,154)(40,116,79,155)(41,117,80,156)(42,118,81,157)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,158)(2,159)(3,160)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,168)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,157)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(106,147)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146), (1,98,139,52)(2,99,140,53)(3,100,141,54)(4,101,142,55)(5,102,143,56)(6,103,144,57)(7,104,145,58)(8,105,146,59)(9,85,147,60)(10,86,127,61)(11,87,128,62)(12,88,129,63)(13,89,130,43)(14,90,131,44)(15,91,132,45)(16,92,133,46)(17,93,134,47)(18,94,135,48)(19,95,136,49)(20,96,137,50)(21,97,138,51)(22,119,82,158)(23,120,83,159)(24,121,84,160)(25,122,64,161)(26,123,65,162)(27,124,66,163)(28,125,67,164)(29,126,68,165)(30,106,69,166)(31,107,70,167)(32,108,71,168)(33,109,72,148)(34,110,73,149)(35,111,74,150)(36,112,75,151)(37,113,76,152)(38,114,77,153)(39,115,78,154)(40,116,79,155)(41,117,80,156)(42,118,81,157) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,158),(2,159),(3,160),(4,161),(5,162),(6,163),(7,164),(8,165),(9,166),(10,167),(11,168),(12,148),(13,149),(14,150),(15,151),(16,152),(17,153),(18,154),(19,155),(20,156),(21,157),(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(106,147),(107,127),(108,128),(109,129),(110,130),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146)], [(1,98,139,52),(2,99,140,53),(3,100,141,54),(4,101,142,55),(5,102,143,56),(6,103,144,57),(7,104,145,58),(8,105,146,59),(9,85,147,60),(10,86,127,61),(11,87,128,62),(12,88,129,63),(13,89,130,43),(14,90,131,44),(15,91,132,45),(16,92,133,46),(17,93,134,47),(18,94,135,48),(19,95,136,49),(20,96,137,50),(21,97,138,51),(22,119,82,158),(23,120,83,159),(24,121,84,160),(25,122,64,161),(26,123,65,162),(27,124,66,163),(28,125,67,164),(29,126,68,165),(30,106,69,166),(31,107,70,167),(32,108,71,168),(33,109,72,148),(34,110,73,149),(35,111,74,150),(36,112,75,151),(37,113,76,152),(38,114,77,153),(39,115,78,154),(40,116,79,155),(41,117,80,156),(42,118,81,157)]])

210 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D6A···6F6G6H6I6J7A···7F12A···12H14A···14R14S···14AD21A···21L28A···28X42A···42AJ42AK···42BH84A···84AV
order1222223344446···666667···712···1214···1414···1421···2128···2842···4242···4284···84
size1111221122221···122221···12···21···12···21···12···21···12···22···2

210 irreducible representations

dim11111111111111112222
type++++
imageC1C2C2C3C4C6C6C7C12C14C14C21C28C42C42C84D4C3×D4C7×D4D4×C21
kernelC22⋊C4×C21C2×C84C22×C42C7×C22⋊C4C2×C42C2×C28C22×C14C3×C22⋊C4C2×C14C2×C12C22×C6C22⋊C4C2×C6C2×C4C23C22C42C14C6C2
# reps1212442681261224241248241224

Matrix representation of C22⋊C4×C21 in GL3(𝔽337) generated by

100
040
004
,
33600
010
00336
,
100
03360
00336
,
18900
001
03360
G:=sub<GL(3,GF(337))| [1,0,0,0,4,0,0,0,4],[336,0,0,0,1,0,0,0,336],[1,0,0,0,336,0,0,0,336],[189,0,0,0,0,336,0,1,0] >;

C22⋊C4×C21 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{21}
% in TeX

G:=Group("C2^2:C4xC21");
// GroupNames label

G:=SmallGroup(336,107);
// by ID

G=gap.SmallGroup(336,107);
# by ID

G:=PCGroup([6,-2,-2,-3,-7,-2,-2,1008,1033]);
// Polycyclic

G:=Group<a,b,c,d|a^21=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽